# Crystallization of Poly(ethylene terephthalate) Modified with Codiols

#### KRISTA BOUMA,\* MARC REGELINK, REINOUD J. GAYMANS

University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Received 8 February 2000; accepted 7 August 2000

ABSTRACT: The nucleation of poly(ethylene terephthalate) (PET) by codiols and olefinic segments was studied. The codiols 1,5-pentanediol, 1,8-octanediol, 2,5-hexanediol, and 1,3-dihydroxymethyl benzene were copolymerized into PET in a concentration range of 0–10 mol %. The melting  $(T_m)$ , crystallization  $(T_c)$ , and glass-transition  $(T_g)$  temperatures were studied. These codiols were found to be able to nucleate PET at low concentrations, probably by lowering the surface free energy of the chain fold. However, the codiols also disturbed the structural order of the polymer, resulting in a decrease in both the  $T_m$  and  $T_c$  values. The optimum codiol concentration was found to be at around 1 mol %, which is lower than previously reported. A diamide segment N,N'-bis(p-carbomethoxybenzoyl)ethanediamine (T2T) was found to be a more effective nucleator than the codiols; however, no synergy was observed between the nucleating effect of the diamide segment T2T and that of the codiol. An olefinic diol  $(C_{36}$ -diol) with a molecular weight of 540 g/mol was also copolymerized into PET in a concentration range of 0-21wt %. Only one  $T_{g}$  was observed in the resulting copolymers, suggesting that the amorphous phases of PET and the  $\rm C_{36}\mbox{-}diol$  are miscible. The main effect of incorporating the C<sub>36</sub>-diol into PET was the lowering of the  $T_g$ ; thus, the C<sub>36</sub>-diol is an internal plastifier for PET. The C<sub>36</sub>-diol had little effect on the  $T_m$  value; however, the  $T_c$  value actually increased in the 11.5 wt % copolymer. As the  $T_g$  decreased and the  $T_c$ increased, the crystallization window also increased and thereby the likelihood of crystallization. Therefore, the thermally stable  $C_{36}$ -diol appears to be an interesting compound that may be useful in improving the crystallization of PET. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2676-2682, 2001

Key words: poly(ethylene terephthalate); crystallization; codiols;  $C_{36}$ -diol; copolymers

## INTRODUCTION

Poly(ethylene terephthalate) (PET) is the most important polyester. In comparison with poly-(butylene terephthalate) (PBT), PET generally

Correspondence to: R. J. Gaymans.

Journal of Applied Polymer Science, Vol. 80, 2676–2682 (2001) © 2001 John Wiley & Sons, Inc.

exhibits better properties in that it has a higher dimensional stability, modulus, and yield stress, but a lower impact strength. Its major drawback is the slow rate of crystallization. When used as an engineering plastic, PET is processed by injection molding. For the success of this process, it is important that the PET crystallizes rapidly and that the crystallization is complete. There are a number of ways to increase the rate of crystallization of PET, including heterogeneous nucleation (talc),<sup>1,2</sup> codiols at low concentrations (5 mol %),<sup>3</sup> long diols

<sup>\*</sup>Present address: Inspectie W&V Regionale Dienst Noord, P.O. Box 465, 9700 AL Groningen, The Netherlands.

Contract grant sponsor: General Electric Plastics, Bergen op Zoom, The Netherlands.

(polyethers),<sup>4,5</sup> and homogeneous nucleators (diamide segments in the chain). $^{6,7}$ 

The nucleating effect of diamide segments incorporated in PET was recently shown<sup>2,6,7</sup>; the most effective diamide is based on ethylene diamine (T2T, see structure below),<sup>7</sup> probably because it has a length similar to the ethylene glycol (EG) unit of PET. The incorporation of only 0.1 mol % T2T into PET decreases the undercooling  $(T_m - T_c)$  from 74 to 54°C.<sup>7</sup>

$$-0 - \overset{O}{C} - \overset{O}{\bigvee} - \overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{\overset{O}{H}}} - \overset{O}{\overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{\overset{O}{H}} - \overset{O}{\overset{O}{\overset{O}{}}} - \overset{O}{\overset{O}{\overset{O}{}}} - \overset{O}{\overset{O}{\overset{$$

## T2T segment

The diamide units self-assemble in the melt phase by hydrogen bonding and therefore the entropy of crystallization is lower in PET containing diamide units.<sup>7</sup>

All the above-mentioned nucleators improve the rate of crystallization, but compared to PBT, the actual rates are still not very high. Given that the mechanisms of nucleation are different, one might ask if there is any synergy in the rate of crystallization between the methods and, in particular, whether any synergy can be obtained by the introduction of diamide units, as well as short and long codiols.

## **PET Containing Short Codiols**

Short codiols usually disturb the order of PET; but, surprisingly, when they are present in small quantities, they are able to act as nucleators.<sup>3</sup> Codiols ( $C > C_4$ ) fold easily and have a lower surface tension than ethanediol.<sup>3,8</sup> The codiols are not incorporated in the crystalline phase because they do not fit into the crystalline lattice of PET and are present in the amorphous phase. The codiols are possibly also partly present in the chain fold and thereby lower the free energy of the fold surface, resulting in an increase in the nucleation rate. According to Hofman et al.,<sup>9</sup> the free energy of the fold surface is given by the following equation:

$$\sigma_E = \frac{\varphi}{2A_0} \tag{1}$$

in which  $\varphi$  is the energy required for the polymer chain to fold and  $A_0$  is the effective chain cross section in the crystal. Branched diols such as 2,5-hexanediol and 3-methyl-2,4-pentanediol are particularly effective, and the optimum concentration is in the range of 5 mol %.<sup>3</sup> Branched diols have methyl side groups; it is probable that these pending groups decrease the surface free energy to a greater extent than linear diols. At higher concentrations, the disturbance of the chain order dominates the crystallization and the crystallization rates are then reduced.

By decreasing the surface free energy of the fold, the critical size of a nucleus is decreased such that nucleation then takes place more easily. The surface free energy is one of the parameters in the isothermal nucleation rate (N) shown in expression  $(2)^{10,11}$ :

$$\dot{N} = \dot{N}_0 \exp\left(-rac{C_1}{R(C_2 + T - T_g)}
ight) \times \exp\left(-rac{32\sigma^2\sigma_E T_m^4}{k(\Delta H_f)^2 T^3(\Delta T)^2}
ight)$$
 (2)

where  $N_0$ ,  $C_1$ ,  $C_2$ , k, and R are constants;  $\Delta H_f$  is the heat of fusion;  $\sigma$  is the surface free energy in the radial direction; and  $\sigma_E$  is the surface free energy in the growth direction. The other parameters are the viscosity related  $T - T_g$  and the undercooling temperature of crystallization  $\Delta T$  $(T_m - T_c)$ . The  $(T_m - T_c)$  value in a dynamic experiment is often taken as a measure for the ease of crystallization.

During the synthesis of PET, the dimer of EG, diethylene glycol (DEG), is always formed, such that PET usually contains between 2 and 4 mol % DEG. The glass-transition temperature  $(T_g)$ , as well as the melting temperature  $(T_m)$ , of PET are known to be decreased with increasing DEG content; however, the effect of DEG on the rate of crystallization is minimal.<sup>12,13</sup>

### PET Containing Long Codiols

PET can be modified using a small amount of polyether segments to form segmented copolymers having a lower  $T_g$  (PET is internally plastified).<sup>5</sup> Lowering the  $T_g$  allows the use of lower mold temperatures; this is an advantage because the usual mold temperatures required for PET are very high (120–40°C) and are therefore impractical.<sup>14</sup> PET can be modified with the polyethers poly(ethylene glycol) (PEG) and poly(butylene glycol)  $(PBG)^{4,5,13}$ ; unfortunately these polyethers are thermally unstable.

The modification of PET with an olefinic diol (C<sub>36</sub>-diol) is new. The C<sub>36</sub>-diol (below) is a branched alkane with a functionality of approximately 2. The C<sub>36</sub>-diol is more thermally stable than PEG and PBG segments and is therefore possibly better suited for use in high melting PET, if it forms one amorphous phase with PET. When the C<sub>36</sub>-diol is copolymerized with PBT, the segmented copolymer has one  $T_g$ .<sup>15</sup>



C<sub>36</sub>-diol

The aim of this work was to investigate the effect of codiol incorporation on the crystallization and thermal properties of PET. The linear, branched, and aromatic codiols were compared: 1,5-pentanediol, 1,8-octanediol, 2,5-hexanediol, and 1,3-dihydroxymethyl benzene. The possible synergy between the codiols and the diamide segment T2T was also studied to further increase the rate of crystallization. In addition, the effect of the  $C_{36}$ -diol on the thermal properties and crystallization behavior of PET was examined.

## EXPERIMENTAL

## Materials

Dimethyl terephthalate (DMT), 1,2-ethanediol, 2,5hexanediol, 1,5-pentanediol, 1,8-octanediol, 1,3-dihydroxymethyl benzene, and  $\text{Ti}(i\text{-}\text{OC}_3\text{H}_7)_4$  were purchased from Merck and used as received. The titanium catalyst  $\text{Ti}(i\text{-}\text{OC}_3\text{H}_7)_4$  was diluted in anhydrous *m*-xylene (0.1*M*). The C<sub>36</sub>-diol was obtained from Uniqema, Gouda (The Netherlands), and the T2T-dimethyl was synthesized and purified as previously described.<sup>16</sup>

## **Melt Polymerization**

The preparation of PET with 0.1 mol % T2Tdimethyl and 5 mol % 1,5-pentanediol is discussed as an example. The reaction was carried out in a 250-mL stainless steel vessel with a nitrogen inlet and mechanical stirrer. The vessel containing the DMT (29.07 g, 150 mmol), T2T- dimethyl (0.058 g, 0.15 mmol), 1,2-ethanediol (20.00 g, 323 mmol), and 1,5-pentanediol (0.78 g, 7.5 mmol) was heated in an oil bath to 180°C and the catalyst solution then added (3 mL). After a 50-min reaction time, the temperature was raised to 280°C (15°C/10 min); after a further 10 min at 280°C the pressure was reduced over a period of 5 min to 20 mbar and then further reduced over 15 min to less than 1 mbar. Finally, the vessel was cooled to room temperature while maintaining the low pressure.

## Solid-State Postcondensation

The polymer was ground in a Fritsch Pulverisette (particle size < 1 mm) and subsequently dried in a vacuum oven at 70°C overnight. Over a period of 24 h the polymer was postcondensed in the solid state at a reduced pressure (<0.1 mbar) in a glass tube that was placed in an oven at 225°C.

## Viscometry

The inherent viscosity of the polymers at a concentration of 0.1 g/dL in *para*-chlorophenol at 45°C was determined using a capillary Ubbelohde 1B.

#### Differential Scanning Calorimetry (DSC)

The DSC spectra were recorded on a Perkin– Elmer DSC7 apparatus equipped with a PE7700 computer and TAS-7 software. Dried samples of 2–5 mg were measured at a cooling and heating rate of 20°C/min. The samples were heated to 320°C; this temperature was maintained for 2 min followed by cooling to 20°C with the maximum of the cooling scan being taken as the  $T_c$ . After 2 min at 20°C, the sample was heated for a second time to 290°C; the maximum of the second heating scan was taken as the  $T_m$ . The peak area was used to calculate the enthalpy.

#### **Dynamic Mechanical Analysis (DMA)**

Samples for the DMA tests  $(70 \times 9 \times 2 \text{ mm})$  were prepared on an Arburg H manual injection molding machine. The barrel temperature of the injection molding machine was set at 50°C above the  $T_m$  of the polymer, and the mold temperature was 150°C. The mold was opened after 2 min. Using a Myrenne ATM3 torsion pendulum at a frequency of approximately 1 Hz, the values for the storage modulus G' and the loss modulus G'' as a function of the temperature were then measured.

| Codiol          | Polymer             | Concn<br>(mol %) | DEG<br>(mol %) | $\eta_{ m inh}$<br>(dL/g) | $T_m$ (°C) | $\Delta H_m$ (J/g) | $\begin{array}{c} T_c \\ (^{\circ}\mathrm{C}) \end{array}$ | $\Delta H_c$ (J/g) | $\Delta T$ (°C) |
|-----------------|---------------------|------------------|----------------|---------------------------|------------|--------------------|------------------------------------------------------------|--------------------|-----------------|
| None            | PET                 | _                | 3.0            | 0.99                      | 254        | 52                 | 180                                                        | -38                | 74              |
| None            | PETA <sub>01</sub>  | _                | 1.0            | 1.03                      | 264        | 45                 | 210                                                        | -51                | 54              |
| 1,5-Pentanediol | PET                 | 0.6              |                | 0.71                      | 260        | 42                 | 201                                                        | -47                | 59              |
| 1,5-Pentanediol | PETA <sub>01</sub>  | 1.1              | 1.8            | 0.67                      | 260        | 49                 | 204                                                        | -51                | 56              |
| 1,5-Pentanediol | PET                 | 6.0              |                | 1.07                      | 248        | 43                 | 186                                                        | -44                | 62              |
| 1,5-Pentanediol | PETA <sub>01</sub>  | 6.0              | 1.7            | 1.06                      | 253        | 44                 | 194                                                        | -47                | 59              |
| 1,5-Pentanediol | PETA <sub>01</sub>  | 8.5              | 0.6            | 0.71                      | 245        | 40                 | 184                                                        | -45                | 61              |
| 1,3-DHMB        | PET                 | 0.5              | 1.6            | 1.09                      | 260        | 48                 | 194                                                        | -50                | 66              |
| 1,3-DHMB        | PETA <sub>01</sub>  | 0.5              |                |                           | 262        | 52                 | 204                                                        | -50                | 58              |
| 1,3-DHMB        | PETA <sub>0.1</sub> | 2.3              | 1.6            | 0.80                      | 259        | 50                 | 200                                                        | -48                | 59              |
| 1,3-DHMB        | PETA <sub>0.1</sub> | 5.0              | 2.8            | 0.64                      | 250        | 43                 | 192                                                        | -44                | 58              |
| 1,3-DHMB        | PET                 | 5.6              | 0.9            | 0.85                      | 252        | 39                 | 185                                                        | -45                | 67              |
| 1,3-DHMB        | PETA <sub>0.1</sub> | 8.4              | 1.4            | 0.61                      | 243        | 21                 | 184                                                        | -22                | 59              |
| 2,5-Hexanediol  | PET                 | 0.6              | 1.0            | 0.73                      | 262        | 51                 | 205                                                        | -65                | 57              |
| 2,5-Hexanediol  | PETA <sub>01</sub>  | 0.8              | 1.2            | 0.62                      | 263        | 60                 | 209                                                        | -53                | 54              |
| 2,5-Hexanediol  | PET                 | 1.0              |                | 0.65                      | 262        | 51                 | 206                                                        | -52                | 56              |
| 2,5-Hexanediol  | PETA <sub>0.1</sub> | 1.7              | 0.9            | 0.53                      | 261        | 51                 | 207                                                        | -52                | 54              |
| 2,5-Hexanediol  | PET                 | 1.8              | 1.2            | 0.56                      | 261        | 47                 | 199                                                        | -50                | 62              |
| 1,8-Octanediol  | PETA <sub>0.1</sub> | 5.0              | 1.6            | 1.79                      | 250        | 55                 | 194                                                        | -51                | 56              |

Table I  $DSC (20^{\circ}C/min)$  Results of Thermal Properties of PET and  $PETA_{0.1}$ , and Copolymers with Different Codiols

1,3-DMMB, 1,3-dihydroxymethylbenzene.

Dried samples were first cooled to  $-100^{\circ}$ C and then subsequently heated at a rate of 1°C/min. The maximum of the loss modulus was taken as the  $T_g$ . The flow temperature ( $T_{\rm fl}$ ) was defined as the temperature where the storage modulus reached 15 MPa.

## NMR Analysis

Proton NMR spectra were recorded on a Bruker AC 250 spectrometer at 250.1 MHz. Deuterated trifluoroacetic acid was used as a solvent in the absence of an internal standard.

## **RESULTS AND DISCUSSION**

It this article we report about the synthesis and properties of copolymers of PET or PETA<sub>0.1</sub> (PET with 0.1 mol % T2T) and a codiol or  $C_{36}$ -diol. Previous research showed that PETA<sub>0.1</sub> crystallizes faster than PET.<sup>7</sup> The effect of the type of codiol used and its concentration in PET or PETA<sub>0.1</sub> on the thermal properties of PET was studied. The DEG content of the copolymers was approximately 0.5–3 mol %; in this concentration range the effect of the DEG content on the crystallization of PET is small.<sup>13</sup>

#### **Incorporation of Codiols**

A number of different codiols were incorporated into PET and PETA<sub>0.1</sub> in a concentration range of 0-10 mol %. The copolymers were synthesized using a titanium catalyst, and the results of the postcondensed polymers are presented in Table I. The codiol and the DEG content were determined by <sup>1</sup>H-NMR, and the effects of the composition on the crystallization and melting temperatures were studied by DSC.

The inherent viscosities of the polymers incorporating 1,5-pentanediol were found to be reasonably high and comparable to those of PET. Figure 1 plots the  $T_m$  and  $T_c$  of PET versus the 1,5pentanediol content as measured by DSC at a heating and cooling rate of 20°C/min. At low concentrations ( $<1 \mod \%$ ), the incorporation of 1,5pentanediol into PET leads to an increase in the  $T_m$  and  $T_c$ , and the increase in  $T_c$  is greater than in  $T_m$ . At higher concentrations the  $T_m$  and  $T_c$ decrease again. The effect of 1,5-pentanediol on the undercooling  $(T_m - T_c)$  of the polymers is shown in Figure 2. The undercooling of PET copolymers decreases upon the incorporation of a small amount of 1.5-pentanediol, but when increasing the concentration the undercooling again increases. The incorporation of 1,5-pen-



**Figure 1** The melting  $(T_m)$  and crystallization  $(T_c)$  temperatures versus the 1,5-pentanediol content in  $(\bigcirc)$  PET and  $(\Box)$  PETA<sub>0.1</sub>.

tanediol increases the nucleation rate of PET at low codiol concentrations but disturbs the chain order at higher concentrations; thus, there is an optimum codiol concentration at around 1 mol %.

The PETA<sub>0.1</sub> crystallized more rapidly than PET and the incorporation of 1,5-pentanediol had no additional positive effect on the  $T_m$  or  $T_c$  or the undercooling. The incorporation of 1,5-pentanediol in PETA<sub>0.1</sub> showed that there was no synergy between the T2T and the codiol in the nucleation. The melt and crystallization enthalpies of PET and PETA<sub>0.1</sub> were found to decrease on increasing the 1,5-pentanediol content (>5 mol %), which was due to the crystallinity being lowered by the disturbance in the chain order.

A number of other diols were also studied; these included the partial aromatic 1,3-dihydroxymethyl benzene, the branched 2,5-hexanediol, and the linear 1,8-octanediol. The branched 2,5-hexanediol should, according to Bier et al.,<sup>3</sup> be an effective nucleator at a concentration of 5 mol %. The partial aromatic 1,3-dihydroxymethyl benzene and 1,8-octanediol are able to fold easily, and this should also be an advantage for the crystallization.<sup>8</sup> The PET containing 2,5-hexanediol had a higher  $T_c$  and was therefore slightly better than the linear 1,5-pentanediol at improving the crystallization of PET; the optimum concentration for 2,5-hexanediol was shown to be 1 mol % (Table I). This concentration was much lower than the 5% previously reported.<sup>3</sup> Incorporation of the partial aromatic 1,3-dihydroxymethyl benzene into PET did not increase the  $T_c$  to the same extent as the 1,5- pentadiol or 2,5hexanediol. It was also found that the copolymer of PETA<sub>0.1</sub> containing 1,8-octanediol had a  $T_c$  value similar to the other aliphatic diols in PETA<sub>0.1</sub>.

Of the codiols studied here, 2,5-hexanediol seemed to be the most effective in the nucleation of PET, but only at very low concentrations (1 mol %). This codiol was also tested in PBT, but there was only a small effect on the  $T_m$ ,  $T_c$ , and  $T_g$  values. Because PBT itself is a rapidly crystallizing polymer, no additional benefit of adding a nucleating codiol could be observed.

## Incorporation of C<sub>36</sub> Segments

The chain flexibility of the amorphous phase of PET can be increased by the incorporation of long segments. We studied the effect of C<sub>36</sub>-diol incorporation on the crystallization and thermal properties of the PET-C<sub>36</sub> copolymers. When the C<sub>36</sub>diol was copolymerized with PBT, one  $T_g$  was observed; and at a high  $C_{36}$  concentration the  $T_g$ approached -55°C.<sup>15</sup> We synthesized copolymers of PET and PETA<sub>0.1</sub> using increasing amounts of C<sub>36</sub>-diol, the results of which are presented in Table II. In Figure 3 the storage moduli of the PETA<sub>0.1</sub> copolymers are plotted against the temperature for various C<sub>36</sub>-diol concentrations. These copolymers have only one  $T_g$ , indicating that the amorphous phases of PET and the  $C_{36}$ diol are fully miscible. In Figure 4 the  $T_m$ ,  $T_c$ , and  $T_g$  values of the PET copolymers are plotted versus the C<sub>36</sub>-dimerized diol content. The incorporation of the  $C_{36}$ -diol into PET has a great effect on the  $T_g$  value, and the  $T_g$  decreases linearly with increasing  $\rm C_{36}$  content. The  $T_m$  and  $T_{\rm fl}$  also decreased slightly with the C<sub>36</sub>-diol content. In



**Figure 2** The undercooling  $(T_m - T_c)$  versus the 1,5-pentanediol content in ( $\bigcirc$ ) PET and ( $\square$ ) PETA<sub>0.1</sub>.

| C <sub>36</sub> -Diol |       |                     |                                 |                                                            |                                                             |                                                            |                                                          |                 |            |                                                                |
|-----------------------|-------|---------------------|---------------------------------|------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-----------------|------------|----------------------------------------------------------------|
| wt %                  | mol % | Polymer             | $\eta_{\rm inh} \ ({\rm dL/g})$ | $\begin{array}{c} T_m \\ (^{\circ}\mathrm{C}) \end{array}$ | $\begin{array}{c} \Delta H_m \\ (\mathrm{J/g}) \end{array}$ | $\begin{array}{c} T_c \\ (^{\circ}\mathrm{C}) \end{array}$ | $\begin{array}{c} \Delta H_c \\ ({\rm J/g}) \end{array}$ | $\Delta T$ (°C) | $T_g$ (°C) | $\begin{array}{c} T_{\rm fl} \\ (^{\circ}{\rm C}) \end{array}$ |
| 0                     | 0     | PET                 | 0.99                            | 254                                                        | 52                                                          | 180                                                        | -38                                                      | 74              | 88         | 244                                                            |
| 0                     | 0     | PETA <sub>01</sub>  |                                 | 263                                                        | 50                                                          | 208                                                        | -51                                                      | 55              | 90         | 247                                                            |
| 11.5                  | 5     | PET                 | 0.74                            | 252                                                        | 54                                                          | 197                                                        | -51                                                      | 55              | 56         | 238                                                            |
| 11.5                  | 5     | PETA <sub>01</sub>  | 0.78                            | 253                                                        | 46                                                          | 195                                                        | -46                                                      | 58              | 60         | 239                                                            |
| 21.4                  | 10    | PET                 | 0.99                            | 249                                                        | 38                                                          | 171                                                        | -47                                                      | 79              | 43         | 236                                                            |
| 21.4                  | 10    | PETA <sub>0.1</sub> | 1.32                            | 243                                                        | 38                                                          | 182                                                        | -35                                                      | 61              | 34         | 232                                                            |

Table II DSC (20°C/min) and DMA Results of PET and PETA<sub>0.1</sub> with C<sub>36</sub>-Diol

the modified PET materials the  $T_c$  was found to first increase, but at high concentrations of  $\rm C_{36}$ -diol it decreased again. This effect on the  $T_c$  was similar to that when using short codiols as described above. This means that with 11.5 wt % (5 mol %)  $\rm C_{36}$ -diol, the crystallization rate was enhanced, because of the higher  $T_c$  and the lower  $T_g$ . The  $\rm C_{36}$ -diol copolymers based on PETA\_{0.1} had  $T_g$  and  $T_m$  transitions similar to those based on PET, and the effect of T2T was overshadowed by the presence of the  $\rm C_{36}$ -diol.

The temperature region between the  $T_m$  and  $T_g$ is the crystallization window and, according to eq. (2), this can also be represented as a  $T_g/T_m$  ratio.<sup>11</sup> Van Krevelen<sup>17</sup> showed that the  $T_{c,\max}/T_m$ ratio increases almost linearly with the  $T_g/T_m$ ratio. The  $T_{c,\max}$  is the temperature at which the crystal growth rate is at its maximum, and for PET the  $T_{c,\max}$  value is 175°C.<sup>10,11</sup> With a lower  $T_g/T_m$  ratio, a lower value for the  $T_{c,\max}/T_m$  ratio is obtained and the crystallization window is thereby widened; as a result, a more rapidly crys-



Another difficulty in the crystallization of PET during injection molding is the high temperature at which crystallization takes place and therefore the impractical high molding temperature.<sup>14</sup> The molding temperature depends on both the  $T_{c,\max}$ and the  $T_g$  and for PET it has to be above 120°C, so that oil-heated molds have to be used. Given that when the C<sub>36</sub>-diol is incorporated into PET the  $T_c$  can be increased, the  $T_g$  decreased, and the  $T_g/T_m$  lowered, a more rapidly crystallizing material can be obtained that can possibly be processed with a lower mold temperature. The C<sub>36</sub>diol is effective in increasing the crystallization window of PET at concentrations up to 11.5 wt % (5 mol %).



**Figure 3** The storage modulus (G') versus the temperature of  $PETA_{0.1} C_{36}$ -diol polymers (wt %  $C_{36}$ -diol).



**Figure 4** The  $T_m$ ,  $T_c$ , and  $T_g$  of (O) PET and (D) PETA<sub>0.1</sub> copolymers versus the C<sub>36</sub>-diol content.



**Figure 5** The  $T_g/T_m$  ratio of ( $\bigcirc$ ) PET and ( $\square$ ) PETA<sub>0.1</sub> copolymers versus the C<sub>36</sub>-diol content.

## CONCLUSIONS

Codiols were able to improve the nucleation of PET by lowering the interfacial free energy; thus, crystallization nuclei were formed more rapidly. However, the presence of codiols also disturbed the chain order and had a negative effect on the crystallization rate. Therefore, there was an optimum codiol concentration, which was found to be at approximately 1 mol %; this was lower than the 5% previously reported.<sup>3</sup> The branched 2,5-hexanediol was the most effective PET nucleating codiol; however, the incorporation of codiols into  $PETA_{0,1}$  had no additional positive effect, in that there was no synergy between the diamide effect and the codiol effect. It was also found that T2T was a more efficient PET nucleator than codiols. The T2T units and the diol groups increased the nucleation rate but probably not the growth rate and are therefore not synergistic.

Only one  $T_g$  was observed when long diol segments (C<sub>36</sub>-diol) were incorporated into PET, and the  $T_g$  was found to decrease with increasing C<sub>36</sub>-diol concentration, C<sub>36</sub>-diol being an internal plastifier for PET. The  $T_m$  was found to be only slightly lowered and the  $T_c$  was increased at low diol concentrations (<10 wt %). By increasing the  $T_c$  and lowering the  $T_g$ , the window between the  $T_g$  and  $T_c$  could be widened, thereby increasing the ability to crystallize and thus allowing the use of lower mold temperatures. Because incorporat-

ing  $C_{36}$ -diol caused the crystallization window to increase, not only the nucleation rate but probably also the crystallization rate was increased.<sup>11</sup> Given that for stiffness reasons the  $T_g$  of the modified PET should not drop below 50°C, the concentration range of interest for the use of the thermally stable  $C_{36}$ -diol was up to 11.5 wt %.

We acknowledge J. Lohmeijer (General Electric Plastics), G. de Wit (General Electric Plastics), and J. Feijen (University of Twente) for their fruitful discussions and valuable suggestions. We thank Uniquema, Gouda, The Netherlands, for providing the  $C_{36}$ -diol.

## REFERENCES

- Bussink, J.; Lohmeijer, J. H. G. M.; van Bennekom, A. C. M.; Gaymans, R. J.; Mamalis, I. N.; Smith, F. G. (to General Electric). Eur. Pat. 0 729 994 A1, 1996.
- 2. Bouma, K.; Gaymans, R. J Polym Eng Sci, submitted.
- Bier, P.; Binsack, R.; Vernaleken, H.; Rempel D. Angew Makromol Chem 1977, 65, 1.
- Nield, E. (to ICI Limited, U.K.). U.S. Pat. 4,322,335, 1982.
- Jackson, J. B.; Longman, G. W. Polymer 1969, 10, 873.
- Van Bennekom, A. C. M.; Gaymans, R. J. Polymer 1997, 38, 657.
- Bouma, K.; Lohmeijer, J. H. G. M.; de Wit, G.; Gaymans, R. J. Polymer 2000, 41, 3965.
- Eisenbach, C. D.; Stadler, E.; Enkelmann, V. Macromol Chem Phys 1995, 196, 833.
- Hofman, J. C.; Weeks, J. J.; Murphey, W. M. J Res Nat Bur Stand 1959, 63 A, 67.
- Van Antwerpen, F. Ph.D. Thesis, TH Delft; G.J. Thieme: Nijmegen, 1971.
- 11. Bicerano, J. Macromol Chem Phys 1998, C38, 391.
- Frank, W. P.; Zachmann, H. G. Progr Colloid Polym Sci 1977, 62, 88.
- Tongyin, Y.; Haisban, B.; Jianhua, C.; Jibang, M.; Jialun, H. Macromol Chem 1986, 187, 2697.
- Kiyotsukuri, T.; Masuda, T.; Tsutsumi, N.; Sakai, W.; Nagata, M. Polymer 1995, 36, 2629.
- Manuel, H. J.; Gaymans, R. J. Polymer 1993, 34, 636.
- Bouma, K.; Lohmeijer, J. H. G. M.; Gaymans, R. J. Polymer 2000, 41, 2719.
- 17. Van Krevelen, D. W. Properties of Polymers, 3rd ed.; Elsevier: Amsterdam, 1990.